Búsqueda Avanzada

Contacto:

gci@uaslp.mx
Búsqueda Facultad de Psicología Ingestigador

Perfil del Investigador


María del Carmen Rodríguez Vallarte

Datos Personales:
Grado Académico:  Doctorado
Nivel SNI: I
Datos Institucionales:
Entidad Académica: Facultad de Ciencias

Dirección de Oficina: Avenida Chapultepec 1570 Privadas del Pedregal San Luis Potosí
Teléfono: (+52) 4448262300
Ext.: 5632
  1. Doctorado en Ciencias con Orientación en Matemáticas Básicas
    Centro De Investigación En Matemáticas
  2. Maestría en Ciencias con Orientación en Matemáticas Básicas
    Centro De Investigación En Matemáticas
  3. Licenciatura en Matemáticas
    Universidad De Las Américas

En el estudio de las álgebras de Lie de dimensión finita, el concepto de doble extensión juega un rol significativo ya que permite construir familias de álgebras de Lie ya sean cuadráticas o simplécticas en términos de un ideal minimal y aplicaciones sucesivas del proceso de doble extensión. Esto también puede aplicarse en el contexto de las álgebras de Lie equipadas con una estructura de contacto. En esta área mis contribuciones han sido las siguientes: proporcionar condiciones para que la doble extensión de un álgebra de Lie de contacto sea nuevamente un álgebra de Lie de contacto; mostrar que existen álgebras de Lie de contacto que no pueden expresarse como una doble extensión de un álgebra de Lie de contacto de codimensión 2; probar que cada álgebra de Lie de contacto nilpotente de dimensión mayor o igual que 5 puede construirse a partir del álgebra de Lie de Heisenberg de dimensión 3 a través de una aplicación sucesiva de dobles extensiones apropiadas; dada una álgebra de Lie g de dimensión finita equipada con una métrica invariante, una estructura simpléctica o una estructura de contacto, determinar cuándo una doble extensión de este tipo de álgebras de Lie produce un álgebra de Lie equipada con el mismo tipo de estructura.

Intereses de investigación personales
  1. Construcción de (super)álgebras de Lie de dimensión finita equipadas con estructuras geométricas
Intereses del grupo de investigación
  1. Estructuras geométricas invariantes en álgebras de Lie solubles
    01/09/2011 - 16/07/2016
    CONACyT